Как проверить дежурное питание ноутбука

Диагностика материнской платы ноутбука

Диагностика неисправности материнской платы ноутбука — самый важный этап при ее ремонте. Но для диагностики платы нужно знать последовательность ее включения.

Диагностика материнской платы ноутбука

Последовательность включения ноутбука

При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер. Чтобы он запустил контроллеры ШИМ, вырабатывающие все напряжения (их много). Если все нормально, он вырабатывает сигнал PowerGood. По этому сигналу снимается сигнал resetс процессора и он начинает выполнять программный код, записанный в BIOS с адресом ffff 0000.

Затем BIOS запускает POST (PowerOnSelfTest), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, а также определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка накопителей – привода, жесткого диска, картридера, дисковода и др. В дальнейшем следует проверка и тестирование дополнительных устройств ноутбука.

После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.

Приводим схему последовательности включения ноутбука

Схема последовательности включения ноутбука

Алгоритм диагностики материнской платы ноутбука

  • проверка напряжений питания на плате согласно datasheet;
  • проверка PowerGood и сигнала запуска;
  • контроль опроса BIOS;
  • проверка загрузки по посткарте, показывающий на каком этапе прекращается загрузка.

Рассматриваем 2 варианта.

Не горит индикатор питания ноутбука

1. Питание не появляется, а также его индикатор не горит.

ite-microcontrollerИщем неисправность в схеме управления питанием платы ноутбука. Проверяем Мультиконтроллер — микросхему, управляющую схемами ШИМ формирования напряжений. А также в нем встроены контроллеры периферии ноутбука. Например, контроллер клавиатуры, мыши, температуры, вентилятора, аккумулятора, тачпада и др. Иногда в мультиконтроллер входит контроллер USB. Часто это микросхема ITE.

На мультиконтроллер подается напряжение непосредственно с адаптера (обычно 19В). А дальше оно передается на другие устройства. Таким образом контроллер управляет процессом включения в ноутбуке.

За распределение питания на плате ноутбука может отвечать и схема коммутации, например, может быть чип MAXIM. Она отвечает за переключение питания с внешнего адаптера на батарею, а также контролирует зарядку и др.

В некоторых случаях в ноутбуке слетает прошивка микроконтроллера. В этом случае ноутбук не запускается, но все напряжения присутствуют и нужные сигналы подаются. Чтобы решить проблему нужно восстановить прошивку.

Горит индикатор питания, но ноутбук не включается

2. Питание в ноутбуке есть, светодиод горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.

Алгоритм поиска неисправности на материнской плате ноутбука следующий.

Разбираем ноутбук, прогреваем микросхемы чипсета на плате по-очереди. После каждого прогрева пробуем плату на включение. Если ноутбук включается, то виноват конкретный чип.

Еще полезно узнать, как произошла поломка. Например, очень важна предыстория поломки. Если до поломки перестали работать USB порты, то скорее всего вышел из строя Южный мост. Но при артефактах на встроенном видео виноват Северный мост. На современных платах мостов нет, потому что вместо них чипсет.

Способы диагностики материнской платы

Чтобы подробнее ознакомиться со способами диагностики материнской платы ноутбука, прочтите здесь. Там описаны способы определения неисправного чипа, а также поиск короткого замыкания на плате.

Как проверить дежурное питание ноутбука

Предисловие: Посмотрев видео на просторе интернета про формированию сигналов и напряжению ноутбука, на примере платы LA-B102P, решил написать статью, в которой много чего узнает интересующийся читатель.

И так начнем с самого основного на мой взгляд , те разновидность напряжений и сигналов. Они делятся на две основные категории, то что образуется до нажатия кнопки, и то что после нажатия кнопки питания ноутбука. Рассмотрим по шагам:
1) 1- 11 шаги Always on (перевод Постоянно включен Напряжения которое появляется до включения кнопки питания)
2) 12-35 шаги After Power on Switch (перевод После включения питания) напряжения с сигналами которые появляются после нажатия кнопки включения ). Рассмотрим плату ноутбука и найдем основное входное напряжение так называемое Vin рис1 оно и будет у нас первым шагом в нашей группе Always on , это напряжение ка вы поняли подается с блока питание ноутбука. Следующим напряжением является в нашей под категории выше уже сказанной вторым шагом BATT+ . Это напряжение сформированное схемой заряда на микросхеме PU301 и ключей PQ310 и PQ312, для зарядки аккумулятора, ниже показанное на рис1.
рис 1
Следующий третий шаг напряжение сформированное 2 ключами PQ301, PQ302, и Pq303 в зависимости от чего питается ноутбук, B+ это основное высокое напряжение с него формируются все остальные напряжения, которое подается на шим преобразователи основных питателей.
рис 2
Так рассматриваем дальше, и на четвертом шаге у нас напряжение +RTCVCC , сформированное с помощью JBATT1, PR105, PD101, R711, те с помощью часовой батарейки.
рис 3
Следующий пятый шаг +3LVP это напряжение сформировано с помощью PU401, вывод (5), название вывода LDO (low drop out перевод малое падение напряжения те линейный стабилизатор с малым выходным падением напряжения).
Как оно сформировалось:
после появление напряжения B+ прошедшее через PL401 появляется на выводе 8 PU401, тем самым через внутренний линейный стабилизатор уже формируется напряжение +3VLP ( я предполагаю, что сигнал+3VLP производители сократили из таких слов +3V LDO POWER ).
Это напряжение поступает на вывод 111 показан на рис 4 с названием EC_VDD0 микросхемы U28 . Она является (Embedded Controller- встроенный контроллер ) дальше EC отвечающая за запуск ноутбука , периферию и мониторинг. EC при подаче напряжения запускает свою внутреннюю прошивку и формирует запускающие сигналы, один из них, те шестой шаг EC_ON через резистивный делитель PR406 и PR409 формирует сигнал 3V5V_EN для запуска PU401 и Pu402, которые формируют седьмой и восьмой шаги это +3VALW +5VALW ( я предполагаю, что производители сократили название это +3V Always +5V Always )
рис 4
Дальше в формирование последующих шагов напряжений вступает 3V/5VALW_PG , сформированное с помощью PU401 вывод (2). Это напряжение запускает шаг девять ШИМ контроллер PU602 через резистор PR607. На выводе 10(LX) PU602 через катушку PL603 и перемычку PJ603 формируется +1.0VALW . Также в шаге десять тоже участвует 3V/5VALW_PG запускающее ШИМ контроллер PU601через резистор PR604. На выводе 3 (LX) PU601 через катушку PL601 и перемычку PJ602 формируется +1.8VALW . Все это показано на рис 5.
рис 5
Следующий одиннадцатый шаг ON/OFF# это вывод 114 EC и вывод 4 JPWRB1.Сигнал приходящий от кнопки включения питания ноутбука с активным низким уровнем приходит на эти выводы рис 6.
рис 6
Вот мы и закончил первую группу напряжений которая называется как выше было сказано Always on . А теперь в таблице ниже повторим их:

Переходим к второй подгруппе напряжений как сказано выше After Power on Switch , это те напряжения которые появляются после нажатия кнопки питания, шаг 12 в общем списке и первый во второй подгруппе After Power on Switch напряжений, сигнал EC_RSMRST# (Embedded Controller resume reset) вывод 100 EC. Активный сигнал что свидетельствует значок #, когда он равен то PMC (Power Management Controller- контроллер питания ) процессора сброшен. При нажатии на кнопку питания ноутбука EC_RSMRST# переходит в режим 1 равный 3.3v, переводит PMC процессора в рабочий режим. Все это показано на рис. 7.
рис. 7
Следующий сигнал 13 в общем списке и второй в подгруппе After Power on Switch напряжений PBTN_OUT# (power booton out- выход сигнализирующий о нажатии кнопки питания ) активный уровень . При нажатии кнопки питания переходит в и возвращается в 1. Поступает из вывода 122 на вывод процессора J26 PMC_PWRBTN# через R1058 0 Om.Как показано на рис. 8
рис. 8
Продолжаем, следующий сигналы 14 и 15 в общем списке а также третий и четвертый в подгруппе After Power on Switch напряжений PMC_SLP_S4# (Power Management Controller sleep state 4 выход контроллера питания в ACPI условие 4 )и PMC_SLP_S3# (Power Management Controller sleep state 4 выход контроллера питания в ACPI условие 3 ) активные уровни 1 для рабочего состояния работы ноутбука.рис. 9
рис. 9
Давайте вспомним ACPI-(Advanced Configuration and Power Interface- усовершенствованный интерфейс управления конфигурацией и питанием ). Имеет глобальные состояния:
G0(S0) (Working) — нормальная работа, (полностью работает, все напряжения присутствуют).
S1 («Power on Suspend» (POS) в BIOS) — состояние, при котором все процессорные кэши сброшены и процессоры прекратили выполнение инструкций. Однако питание процессоров и оперативной памяти поддерживается; устройства, которые не обозначили, что они должны оставаться включенными, могут быть отключены;
S2 — более глубокое состояние сна, чем S1, когда центральный процессор отключен, обычно, однако, не используемое;
S3 («Suspend to RAM» (STR) в BIOS, «Ждущий режим» («Standby») в версиях Windows вплоть до Windows XP и в некоторых вариациях Linux, «Sleep» в Windows Vista и Mac OS X, хотя в спецификациях ACPI упоминается только как S3 и Sleep) — в этом состоянии на оперативную память (ОЗУ) продолжает подаваться питание, и она остаётся практически единственным компонентом, потребляющим энергию. Так как состояние операционной системы и всех приложений, открытых документов и т. д. хранится в оперативной памяти, пользователь может возобновить работу точно на том месте, где он её оставил — состояние оперативной памяти при возвращении из S3 то же, что и до входа в этот режим. (В спецификации указано, что S3 довольно похож на S2, только чуть больше компонентов отключаются в S3.) S3 имеет два преимущества над S4: компьютер быстрее возвращается в рабочее состояние, и, второе, если запущенная программа (открытые документы и т. д.) содержит конфиденциальную информацию, то эта информация не будет принудительно записана на диск.
S4 («Спящий режим» (Hibernation) в Windows, «Safe Sleep» в Mac OS X, также известен как «Suspend to disk», хотя спецификация ACPI упоминает только термин S4) — в этом состоянии всё содержимое оперативной памяти сохраняется в энергонезависимой памяти, такой, как жёсткий диск: состояние операционной системы, всех приложений, открытых документов и т. д. Это означает, что после возвращения из S4 пользователь может возобновить работу с места, где она была прекращена, аналогично режиму S3. Различие между S4 и S3, кроме дополнительного времени на перемещение содержимого оперативной памяти на диск и назад, — в том, что перебои с питанием компьютера в S3 приведут к потере всех данных в оперативной памяти, включая все не
сохранённые документы, в то время как компьютер в S4 этому не подвержен. S4 весьма отличается от других состояний S и сильнее S1-S3 напоминает G2 Soft Off и G3 Mechanical Off. Система, находящаяся в S4, может быть также переведена в G3 Mechanical Off (Механическое выключение) и все ещё оставаться в S4, сохраняя информацию о состоянии так, что можно восстановить операционное состояние после подачи питания.
G2 (S5) (soft-off) — мягкое (программное) выключение; система полностью остановлена, но под напряжением, готова включиться в любой момент. Влияние условий на состояния показано на рис 10.
рис 10
Если кратко с выше сказанного и условий таблицы то ,когда оба сигнала SLP_S3# и SLP_S4# ,в состоянии HI. то плата ноутбука в рабочем состоянии S0 (полностью работает, все напряжения присутствуют). Также в некоторых схемах вместо PMC_SLP_S3# и PMC_SLP_S4# может быть указано PM_SUSB#, PM_SUSC# те:
PMC_SLP_S3# =PM_SUSB#, PMC_SLP_S4# =PM_SUSC#
PM_SUSC# (Power Management Suspend Plane C Control)
PM_SUSB# (Power Management Suspend Plane B Control )
Давайте разберемся откуда эти сокращения, все это идет с прошлого, когда использовалась для построения схем архитектура южного и северного мостов, те чипсет (набор микросхем) состоял из Northbri dge северного моста который находился ближе к процессору (как на земном шарике в верху север в низу юг ) и Southbridg южный мост, тот который отвечал за периферию. Все это показано ниже на рис 10. Далее если мы возьмем дата шит любого южного моста к примеру VT8237 и найдем таблицу описания выводов, то найдем следующее:

Читайте также  Как проверить железо компьютера на работоспособность

Что обозначает:
SUSB# Power Management Suspend Plane B Control-power management STR and STD suspend
states. STR -Suspend to RAM STD-Suspend to DISk. Если посмотреть выше в статье где говорилось о состояния питания то мы увидим S3 «Suspend to RAM»
SUSC# Power Management Suspend Plane C Control-power management STD suspend state S4-«Suspend to disk». Вот поэтому в схемах используют и те и другие обозначения. Вот так все просто если разобраться .
рис 10

Диагностика и ремонт цепей питания ноутбуков Acer

Ремонт материнских плат на платформе Compal, с неисправностью «не заряжает» АКБ или «не включается», особенно после залития жидкостью, зачастую вызывает у мастеров трудности. Рассмотрим типовую схему питания и заряда, применяемую в ноутбуках Acer, на примере платформы LA-6552p. Эта материнская плата устанавливается в ноутбуках Acer 5552 и Emashines E442. Другие материнские платы, имеющие в своем составе микросхему заряда ISL 6251, построены по аналогичному принципу и имеют минимальные отличия.

  • Полная схема ноутбука: ACER Aspire 5552 PEW96 LA-6552p
  • Datasheet микросхемы чарджера ISL-6251

Будем рассматривать параллельно типовую схему включения чарджера ISL6251a и те куски схемы ноутбука, которые связаны с запуском и зарядом аккумулятора.

Эта статья подразумевает, что вы знакомы с работой микросхемы чарджера и мультиконтроллера. Если это не так, то сначала изучите другую нашу статью по электрическим цепям чарджера и питания и функционирования мультиконтроллера при запуске ноутбука.

Схема включения микросхемы заряда ISL6251:

схема включения isl6251

В этой референской схеме:

  • вход DCIN — вход питания от адаптера питания 19 В
  • вход ACSET — вход обнаружения нормального уровня напряжения питания от сети (должно быть больше 1.26 V для включения, через резисторный делитель)
  • выход ACPRN# — сигнал на мультиконтроллер на начало работы
  • вход EN — сигнал от мультиконтроллера на разрешение заряда аккумулятора
  • CELLS — сигнал от мультиконтроллера, указывающий, какое напряжение заряда аккумулятора должно быть на выходе чарджера
  • VDD и VDDP — напряжение питания самого чарджера, которое он сам генерирует из входного напряжения сети

Работа чарджера ISL6251 и заряд аккумулятора

Питание +19в поступает на 24-й вывод микросхемы чарджера DCIN с разъема питания через диод PD16 и резистор PR281 (входное напряжение схемы обозначено VIN). Если вы заменили микросхему, проверьте цел ли резистор. Внутри микросхемы на выводе 1 VDD формируется напряжение питания +5в которое далее через PR86 поступает на 15 вывод VDDP и запитывает остальные узлы микросхемы. Проверяем присутствие +5в на 15 выводе.

На выводе VREF должно быть генерируемое чарджером опорное напряжение 2.39v

Вход ACSET — чарджер детектирует напряжение питания 19в, которое делитель на PR280 и PR282 понижает в 14 раз. Для этого напряжение на ACSET должно превысить 1.26в, что соответствует 18.0в на входе. Обнаружив нормальное питание, чарджер опускает в низкий уровень ACPRN — подаёт сигнал мультиконтроллеру.

Мультиконтроллер обменивается данными с контроллером аккумулятора и при необходимости зарядки выставляет высокий уровень на выводе EN чарджера, разрешая ему заряд.

На выводе CELLS мультиконтроллер устанавливает напряжение, зависящее от количества банок в аккумуляторе, указывая тем самым чарджеру, какое напряжение подавать на аккумулятор. Чарджер вырабатывает напряжение BATT+ на заряд батареи (типовое 12.6 В).

Выводы CSIN CSIP подключены к датчику тока источника питания — резистору PR61, а выводы CSON CSOP — источнику тока заряда. При превышении тока чарджер выключает зарядку аккумулятора.

Таким образом, для заряда аккумулятора необходимо, чтобы чарджер был запитан (DCIN = 19в, VDD и VDDP = 5в, VREF = 2.39v), чтобы он продетектировал питание (ACSET >1.26v) мультиконтроллер выдал ему сигнал EN.

Должна запуститься генерация на транзисторах PQ55 PQ57, токи на PR61 и PR78 не должны превысить предельно допустимых. Здесь следует обратить внимание, что кроме самих резисторов PR61 PR78 могут подгореть также и PR74 PR76 PR72 PR73, из-за чего чарджер может неправильно измерять токи.

Работа цепей питания LA6552p. Первоначальный запуск и появление напряжений

Для работы ноутбука необходимо, чтобы открылись входные полевые транзисторы PQ14 PQ15. Их открывает транзистор PQ68B. Его же открывает высокий уровень сигнала PACIN. На транзисторах PQ68A, PQ21, PQ19 собрана блокировка — низкий уровень на затворе PQ68A приводит к надежному закрытию PQ14, PQ15. Также это может произойти, если мультиконтроллер подымет сигнал ACOFF.

Теперь посмотрим, откуда берется PACIN. По схеме мы видим, что из 6251VDD через резистор PR286. В добавок к этому, PQ67 должен быть закрыт, для чего чарджер должен продетектировать наличие внешнего питания (вывод ACSET) и опустить сигнал ACPRN.

Запуск ШИМ RT8205, дежурные напряжения +3 и +5

На данной платформе генерация дежурных напряжений происходит только при питании от адаптера. Сигналы держаного напряжения здесь называются +3ALWP и +5ALWP, формируемых микросхемой RT8205.

Рассмотрим работу ноутбука без аккумулятора, поскольку при ремонте материнской платы обычно мастер так и поступает, запитывая плату от лабораторного блока питания. После подключения адаптера появляется VIN и PreCHG. Через резистор PR128 оно поступает на базу PQ34, открывая его, а он, в свою очередь, открывает PQ31, подавая PreCHG на B+. Поскольку пока никакие узлы не запущены, потребления по B+ нет, то через резисторы PR124-PR127 происходит заряд конденсаторов, подключенных к B+

Когда напряжение B+ достигнет достаточного для запуска RT8205, появляются напряжения +3VLP и VL. А дальше, если запуск не заблокирован транзисторами PQ63A, PQ63B, напряжения +3ALWP и +5ALWP Чтобы произошел запуск, нужно, чтобы PQ64 был открыт. Для этого должно быть напряжение VS, а ACPRN в низком уровне. VS берется из VIN через резисторы PR10 PR11.

При питании от батареи VS отсутствует и появляется при нажатии на кнопку питания. Таким образом, при питании от аккумулятора в дежурном режиме RT8205 генерирует только +3VLP и VL.

Многие платформы Compal имеют схожие схемы. В некоторых могут применяться операционные усилители для формирования ACSET и других сигналов. В этих узлах для формирования опорного напряжения может использоваться напряжение 3V RTC, такие платы не запускаются, если батарейка часов разряжена.

Питания на мат.плате.

Подскажите где мерить на плате основные напряжение.

На какой ?
Начинаем с входной цепи.
Если в общем для любой платы :
Открываем схему, ищем чарджер, проверяем цепь до него, смотрим сигналы которые он должен получить и отдать, далее ищем шим дежурного напряжения и ковыряемся с ним.

Поделиться302.10.2014 03:41:26

  • Автор: RZi
  • Старожил
  • Зарегистрирован : 15.03.2013
  • Сообщений: 112
  • Уважение: [+1/-0]
  • Позитив: [+6/-0]
  • Возраст: 36 [1985-02-02]
  • Провел на форуме:
    1 день 13 часов
  • Последний визит:
    23.11.2016 11:05:56

да, это я так, в общем хотел понять последовательность действий)где то видел что мерят сопротивление на дросселях, всех. что этим можно определить ?в каком блоке КЗ ?

Поделиться402.10.2014 11:02:11

  • Автор: freeqwer
  • Мастер и Администратор
  • Откуда: Москва
  • Зарегистрирован : 21.08.2010
  • Сообщений: 6442
  • Уважение: [+275/-0]
  • Позитив: [+169/-1]
  • Возраст: 44 [1976-12-24]
  • Контакты: Тел :8-905-553-7842 Сергей ( Viber и WhatsApp )
    Skype : freeqwer8
    Mail : freeqwer@rambler.ru
  • ICQ: 439424388
  • Skype: freeqwer8
  • Провел на форуме:
    4 месяца 19 дней
  • Последний визит:
    18.10.2021 15:19:23

видел что мерят сопротивление на дросселях, всех. что этим можно определить ?

Дроссель, как правило является выходным элементом одного из питаний , формируемого определенным блоком формирования напряжений и соответственно там, при исправности всех компонентов (сидящих на данной линии) — не может быть короткого замыкания. Если имеется , значит нужно искать проблему в линии , на которой расположен данный дроссель.

Читайте также  Подлагивает компьютер что делать

Поделиться502.10.2014 19:20:41

  • Автор: Сеган
  • Мастер
  • Откуда: Екатеринбург — Алапаевск
  • Зарегистрирован : 06.03.2014
  • Сообщений: 2735
  • Уважение: [+259/-4]
  • Позитив: [+53/-2]
  • Провел на форуме:
    1 месяц 3 дня
  • Последний визит:
    17.09.2021 09:34:16

да, это я так, в общем хотел понять последовательность действий)

Очень кратенько, как собсенно и сам вопрос.

БЕРЕШЬ СХЕМУ И ПОШЕЛ:
1. Входные напряжения -> AD_DOCK_IN и AC_BAT_SYS там же рядом мосфеты дохлые вявляем.
2. Питание ЕС контроллера
3. Дежурные напряжения -> +3VSUS, +5VSUS микросхема дежурки не запустит эти напряжения если мульт ей не прикажет или сама дохлая.
4. Кнопка включения -> PWRSW# EC потыкать помыкать. При нажатии 3 Вольта должны на землю ложиться, это все уходит на мульт
5. Основные напряжения -> +1.8V, +1.5V, +2.5V, +3VS, +5VS . По плате потыкать, ну там память, видео, дросселя всякие .
6. Питание процессора -> сигнал VRON, питание .
7. Включение тактового генератора -> некоторые из условий это 14МГц и питание 3V
Дальше только осликом или вангу звать
Много команд в процессе исходит от мостов, тут нужны спец.средства и волшебство, чтобы успешно отдиагностировать, в общем все очень просто.
Некоторые из мостов поддаются прогреву, если есть уверенность в виновнике, то исключительно в целях диагностики можно греть и смотреть на поведение.
Я к тому, что если север сдох, то кина не будет, хоть утыкай всю плату щупами. А север как раз много кому на плате рассказывает как надо жить, ну и мульт тоже.

Последовательность запуска материнской платы ноутбука

Зачастую диагностика неисправности материнской платы ноутбука осложняется тем,что в схеме нет последовательности запуска (Power Up Sequence).

В данной статье возьму за пример схему от ноутбука Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete.

Как видим в этой схеме отсутствует последовательность запуска,что значительно осложняет представление о том, в какой момент тот или иной сигнал/напряжение должно появится.В этом случае можно найти схему от ближайшей модели в которой есть интересующая нас последовательность запуска и опираясь на неё провести диагностику.

В красных кружках подписаны цифры от 1 до 30 что и является количеством шагов до полного запуска платы.
Я распишу каждый из данных шагов и представлю их на схеме от Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete где у нас последовательность запуска отсутствет.

Итак,мы разобрались с типом транзистора и его распиновкой.Теперь перейдём к схеме.

Для того чтобы он открылся нужно что бы на затворе(GATE)появился (за счёт этого PQ54 откроется,чтобы там появился ,транзистор PQ56 должен быть открыт,таким образом подтягивая напряжение на затворе к земле и открывая PQ54.PQ56 это N-канальный транзистор и открывается положительным напряжением на затворе,в данном случае это сигнал ACOK,когда он появится на затворе PQ56,тот в свою очередь откроется и подтянет к земле 19V на затворе PQ54,таким образом открывая его и пропуская 19V на плату.Сигнал ACOK выходит с Chargera и равен напряжению от 3 до 5 вольт.Транзистор PQ3 при этом должен быть закрыт,так как через него шина VIN запитывается от АКБ.Для того чтобы PQ3 был закрыт на его затворе должно быть напряжение БП 19V.Что бы оно там появилось транзистор PQ6 так же должен быть открыт.Таким образом он пропустит через себя напряжение БП,его выход подключен к затвору PQ3,таким образом на затворе PQ3 появляется напряжение БП не давая ему открыться.При питании только от БП всё должно происходить так же.
Итак,на этом этапе мы разобрались как напряжение с БП попадает на общую шину VIN.

На рисунке 3 мы видим PQ3,через него запитывается шина VIN при питании только от АКБ.

PQ54 при этом должен быть закрыт.При питании только от АКБ сигнал ACOK равен .Соответственно PQ56 будет закрыт.
Напряжению на затворе PQ3 в этот момент будет отсутствовать,так что он будет находится в открытом состоянии.За счет того что в данный момент PQ56 закрыт,напряжение с PQ3 попадает на затвор PQ54 и он находится в закрытом состоянии.
Теперь когда мы разобрались как питание попадает на общую шину VIN,можно перейти к следующему шагу.

Второй шаг последовательности запуска это VIN,аббривеатура расшифровывается как Voltage Input — входное напряжение.В принципе как формируется VIN мы уже рассмотрели так что переходим к шагу под номером три.

Третий шаг ACIN,аббривеатура расшифровывается как Alternating Current Input — подключен адаптер переменного тока.
На этом этапе Charger сообщает EC контроллеру о том что подключен или не подключен БП.
Если сигнал ACIN имеет низкий логический уровень,то это означает что БП не подключен,а если сигнал ACIN имеет высокий логический уровень,то это означает что подключен БП.

Четвертый шаг это формирование дежурных напряжений 5VPCU и 3VPCU,VPCU это Voltage Pulsed Current — Напряжение Импульсного Тока.За дежурные напряжения отвечает микросхема ISL6237IRZ-T,которая из напряжения VIN формирует +5VPCU и 3VPCU,давайте рассмотрим какие сигналы она должна получить для включения дежурных напряжений.
Во первых она должна быть запитана.Для этого на 6ю ножку микросхемы должно приходить напряжение VIN.Следующее что должно быть это сигнал включения линейного регулятора EN_LDO(4я ножка),этот вывод так же подключён к шине VIN,но через резистивный делитель и напряжение на самом контакте EN_LDO будет около 5ти вольт.После получения сигнала EN_LDO должен включиться линейный регулятор и на 7й ножке микросхемы должно появиться напряжение 5V_AL(5 Volt Always),из этих 5V_AL формируется сигнал 3V5V_EN(3V5V Enable) сигнал включения 5VPCU и 3VPCU.Так же здесь формируется напряжение +15V(+15V_ALWP) при помощи умножителя напряжения на диодах и конденсаторах делая из 5ти вольт 15ть.

На пятом этапе присходит запитка EC контроллера от 3VPCU.Тут добавить нечего.

при нажатии кнопки включения NBSWON# просаживается до нуля,так как при нажатии кнопки NBSWON# замыкается на землю,таким образом на 125й ножке EC контроллера получается логический ,что даёт ему команду на запуск.

Замена материнской платы ноутбука
Добрый день, форумчане Хотел бы обратиться с вопросом, касательно замены материнской платы для.

ASUS A3E Ищу схему материнской платы ноутбука
Необходима схема материнской платы ноутбука Asus A3E. Есть здесь, но за деньги. Может у кого.

Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы DAY23AMB6C0 REV. C
Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы.

Неизвестный компонент материнской платы ноутбука asus n53sv
Напишите название(маркировку) или скиньте четкое фото крупным планом данного компонента.

сигнал S5_ON есть и открывает транзистор PQ42 подтягивая к земле напряжение 5VPCU.Таким образом на втором выводе резистора PR112 будет 0V.За счёт этого и на затворе PQ77 будет 0V и он будет закрыт давая возможность напряжению 15V попасть на затворы Q67,PQ83,таким образом позволяя им открыться и сформировать напряжения 3V_S5,5V_S5.

Восьмым шагом собственно говоря было формирование 3V_S5,5V_S5,но так как мы это уже обсудили,то перейдём к шагу девять.

Девятый шаг это ICH_RSMRST# — I/O Controller Hub A Resume And Reset Signal Output.На этом этапе EC контроллер выдает с 33 ножки сигнал ICH_RSMRST# о готовности системы к запуску. Этот сигнал идёт от EC контроллера до хаба(I/O Controller Hub) в случае Lenovo ThinkPad Edge 14.На Lenovo Thinkpad E40 этот сигнал идёт к южному мосту.

Десятый шаг последовательности запуска DNBSWON#,расшифровывается как Delayed Notebook Switch ON.В схеме Lenovo ThinkPad Edge 14 поиск не нашёл этот сигнал,но в схеме Lenovo Thinkpad E40 это 80я ножка EC контроллера,а учитывая что EC контроллеры одинаковые,сигнал на 80й ножке Lenovo ThinkPad Edge 14 будет такой же и называется он SIO_PWRBTN#.
После того как сигнал NBSWON# поступает на EC контроллер,тот в свою очередь передаёт его в виде сигнала SIO_PWRBTN# на хаб(I/O Controller Hub).

Одиннадцатый шаг это сигнал PM_SLP_S4# который идёт с хаба на EC контроллер в ответ на сигнал SIO_PWRBTN# с EC контроллера на хаб.Сигнал PM_SLP_S4# обычно равен напряжению 3.3V и приходит он на 73 ножку EC контроллера.

Читайте также  Как проверить состояние видеокарты на ноутбуке

сигнал SUSON есть и за счёт этого транзистор PQ38 открыт и подтягивает 5VPCU к земле,за счёт этого на втором выводе резистора PR114 будет и этот же будет на затворе PQ78 и он будет закрыт,при этом 15V смогут через резистор PR257 попасть на затворы PQ66 и PQ85 открывая их и формируя 5VSUS,3VSUS из уже ранее появившихся 5VPCU и 3VPCU.

Напряжение 1.5VSUS формируется по другому,за него отвечает микросхема UP6163AQAG с позиционным номером PU10.
1.5VSUS это напряжение оперативной памяти,на рисунке 11

представлена таблица состояний и логические уровни сигналов S3 и S5 в том или ином состоянии,то есть в состоянии S4/S5 сигналы S3 и S5 будут иметь низкий логический уровень "0",или 0 вольт,и напряжений VDDQ,VTTREF и VTT не будет.В состоянии S3 сигнал S3 будет иметь низкий логический уровень "0",или 0 вольт,а сигнал S5 будет иметь высокий логический уровень "1" или 3.3 вольта,в таком состоянии напряжения VDDQ,VTTREF будут присутствовать,а напряжение VTT нет.В состоянии S0 сигналы S3 и S5 будут иметь высокий логический уровень "1" и все напряжения будут включены.Когда это произойдёт PU10 должна выдать сигнал PGOOD(Power Good) с 13й ножки,этот сигнал означает что с питанием формируемым данной микросхемой всё в порядке и напряжение этого сигнала должно составлять 3 вольта.

Тринадцатый шаг это PM_SLP_S3#(в схеме Lenovo Thinkpad E40,а в схеме Lenovo ThinkPad Edge 14 этот сигнал называется SIO_SLP_S3#,18я ножка EC контроллера,который так же выдаётся хабом в ответ на сигнал SIO_PWRBTN#,одновременно с сигналом PM_SLP_S4# и равен он 3.3V.Получив этот сигнал EC контроллер выдаст сигнал MAINON,но MAINON это уже четырнадцатый шаг,так что перейдём к нему.

Четырнадцатый шаг это сигнал MAINON который выдаёт EC контроллер с 96й ножки и этот сигнал является сигналом на включение таких напряжений как 0.75VSMDDR_VTERM,+5V,+3V,+1.8V,+1.5V,+1.05V_VTT.
Разберёмся по порядку.
0.75VSMDDR_VTERM напряжение терминации мы уже рассмотрели,когда сигнал MAINON становится сигналом S3 и запускает напряжение 0.75VSMDDR_VTERM,так что будем смотреть как получаются +5V,+3V.
Здесь всё так же как и с другими уже сформировавшимися напряжениями при помощи сигнала SUSON,поэтому объясню на словах.
Когда сигнал MAINON попадёт на затвор PQ39 тот в свою очередь откроется и подтянет к земле 5VPCU,таким образом на затворе PQ76 появится и он будет закрыт,давая возможность 15ти вольтам попасть на затворы PQ79 и PQ65 после чего появятся напряжения +3V,+5V.

Теперь посмотрим как появляется 1.8V.За это напряжение отвечает микросхема OZ8116LN с позиционным номером PU8.Для того что бы это напряжение появилось,PU8 должна быть запитана.Для этого на 2ю ножку данной микросхемы должно приходить напряжение VIN,а так же дежурные 5VPCU на и 16ю ножку.Если с этим всё в порядке,то на данном этапе на её 3ю ножку(ON/SKIP)поступит сигнал MAINON,который и даст данной микросхеме команду на запуск и она сформирует напряжение 1.8V,после чего она должна выдать сигнал PGD(Power Good)c 4й ножки.

Теперь посмотрим как появляется 1.5V.Здесь всё так же просто как и с уже рассмотреными ранее напряжениями.MAINON имея высокий логический уровень откроет транзистор PQ26 и просадит 5V на землю.За счёт этого на затворе PQ27 будет выставлен и он будет закрыт,позволив напряжению 15V попасть к затвору PQ29 и таким образом откроет его для формирования +1.5V.

Теперь напряжение +1.05V_VTT.За него отвечает микросхема RT8204CGQW с позиционным номером PU6.Здесь всё так же как и с PU8.На 16ю ножку должно прийти питание VIN,на и питание 5VPCU и сигнал MAINON (15я ножкаEN/DEM),после чего данная микросхема запустится и сформирует +1.05V_VTT и если на этом этапе всё пройдёт нормально,то она так же как и предидущие микросхемы выдаст сигнал PGOOD с 4й ножки.

Так же есть шаги 15а и 16а,это как и говорилось ранее сигналы Power Good которые в последующем становятся сигналами HWPG.Но об этом далее.

Ремонт цепи питания ноутбука

Для подзарядки и/или для работы ноутбук подключается к электрической сети. Напряжение в сети России составляет 220 вольт переменного тока. Между ноутбуком и электрической сетью находиться блок питания, который понижает напряжение до уровня необходимого для питания/зарядки ноутбука и преобразует его из переменного в постоянное. Внутри ноутбука есть устройства, которые работают от 3 и от 5 вольт. Откуда берется это напряжения? Данное напряжение формируется специальными устройствами, которые составляют цепи питания ноутбука. В процессе эксплуатации ноутбука из-за небрежного обращения (залили ноутбук), или скачков напряжения происходит разрыв цепей питания ноутбука. И мы можем наблюдать картину, при которой ноутбук не включается (не путать с тем, что ноутбук не загружает операционную систему). Также ноутбук может не реагировать на кнопку включения.

Элементарным примером ремонта цепи питания ноутбука можно назвать замену блока питания ноутбука, перепайку разъема питания ноутбука, ремонт штекера блока питания. Данный ремонт не сложен и возможен в любом сервисе имеющем инженера и необходимое оборудование.

Если неисправность вашего ноутбука вызвана выходом из строй блока питания, или необходимостью замены/ремонта штекера/гнезда для подключения блока питания, можно сказать, что вы отделались «малой кровью»! В системе питания ноутбка есть еще отдельные цепи питания, которые как раз и формируют напряжения от 1,5 до 24 вольт и используются для питания процессора, оперативной памяти, чипсета, жесткого диска, матрицы, и многих других устройств в ноутбуке. Расположены они как правило на материнской плате ноутбука. Ремонт таких цепей очень трудоемкий процесс он требует знаний схемотехники и что не мало важно, это наличие запчастей и специального оборудования. Как правило выполняется на территории сервисного центра и производится после предварительной диагностики ноутбука.

  • Восстановление ноутбука после залития жидкостью.
  • Восстановление материнских плат после короткого замыкания, скачков напряжения сети, изменения входной полярности питания ноутбука.
  • Неисправности при работе с батареей ноутбука: ноутбук не заряжает или не видит батарею.

Ремонт систем питания ноутбука

Допустим, в результате короткого замыкания или залития ноутбука, каскадом выгорают несколько элементов, тогда необходимо методом поэтапного их выявления и замены, восстанавливать работоспособность ноутбука. Пробои в цепи питания ноутбука частенько случаются из-за скачков напряжения в сети. Так же использование не оригинальных блоков питания или не соответствующих требуемым характеристикам по вольтажу и потребляемому току, приводит к выходу из строя цепей питания и заряда, при этом значительно сокращается срок жизни аккумулятора. Неисправный штекер блока питания или разъёма питания на ноутбуке (плохой контакт) так-же может привести к выходу из строя первичной цепи питания ноутбука.

Ремонт/восстановление цепей питания материнской платы ноутбука (с учётом стоимости расходных материалов) от 1500 до 4500 руб

Последовательность включения ноутбука

Для диагностики неисправности материнской платы ноутбука нужно знать последовательность ее включения.

mb-power-on

При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все контроллеры ШИМ, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал reset с процессора и он начинает выполнять программный код, записанный в BIOS с адресом ffff 0000.
Затем BIOS запускает POST (PowerOnSelfTest), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование.
После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, картридера, и др., а после проверка и тестирование дополнительных устройств.
После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.

Если питание не появляется, светодиод питания не горит.

Ищем неисправность в схеме управления питанием. Проверяем Мультиконтроллер — микросхему, управляющую схемами ШИМ, формирования напряжений. Также в нем встроены контроллеры периферии (клавиатуры, мыши, температуры, вентилятора, аккуиулятора, тачпэда и др.). Иногда в мультиконтроллер входит схема питания USB. Часто это микросхема ITE. На мультиконтроллер подается напряжение питания непосредственно с адаптера (обычно 19В), а дальше передается на другие устройства. Таким образом контроллер управляет процессом включения в ноутбуке.
За распределение питания может отвечать и схема коммутации питания (например, может быть чип MAXIM). Она отвечает за переключение питания с внешнего адаптера на питание от батареи, контролирует зарядку и др.
В некоторых случаях слетает прошивка микроконтроллера. В этом случае ноутбук не запускается, хотя все напряжения присутствуют и нужные сигналы подаются.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: